АКВТ.10.02.03.ЛР26.0000

7 Аутентификация пользователей на основе биометрических данных

7.1 Цель работы

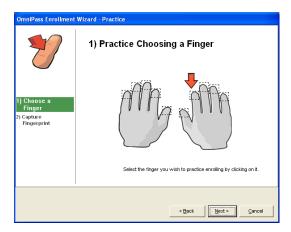
7.1.1 Изучить методы, средства аутентификации пользователей в компьютерной системе с помощью манипулятора типа «мышь»

7.2 Приборы и оборудование

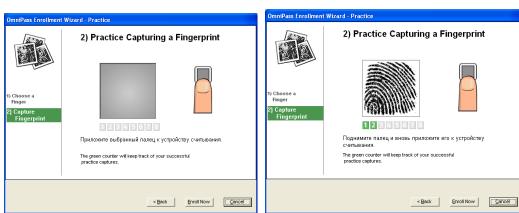
- 7.2.1 Методические указания по выполнению лабораторно-практических работ
- 7.2.2 Операционная система Windows XP
- 7.2.3 Биометрическая мышь

7.3 Порядок выполнения работы

- 7.3.1. Войдите в систему, выбрав виртуальную машину **WXPSecretNet** (имя пользователя **administrator,** пароль **adm**)
- 7.3.2. Прежде чем начать работу, подключите биометрическую мышку с помощью пункта меню виртуальной машины (Файл Выбор устройства USB).
- 7.3.3 Запустите программу Softex (Пуск \rightarrow Программы \rightarrow Softex \rightarrow OmniPass Enrollment Wizard).



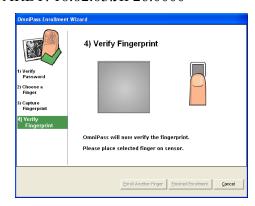
7.3.4 В окне программы нажмите на кнопку Practice



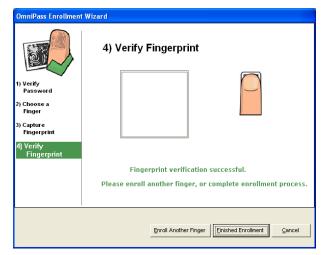
АКВТ. 10.02.03.ЛР26.0000

7.3.5 В появившемся окне с помощью мышки укажите палец, с которого будет считываться отпечаток.

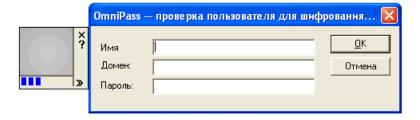
7.3.6 Нажмите кнопку Next.



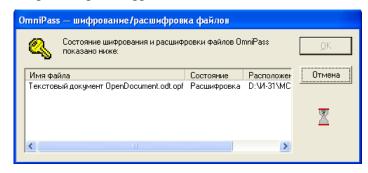
- 7.3.7 На следующем шаге необходимо выполнить инструкции программы:
 - проложить выбранный палец к устройству считывания;
 - поднять палец и вновь приложить к устройству.


После удачного прохождения практики по работе с программой Softex задайте свои биометрические данные пользователю операционной системы. Для этого необходимо нажать кнопку Enroll Now.

7.3.8 На первом шаге вводится пароль пользователя. На втором шаге в окне программы указывается палец, с которого будет считываться отпечаток пальца. Далее происходит считывание биометрических характеристик, при этом пользователь следует инструкциям программы. И на последнем шаге необходимо еще раз приложить к сенсору указанный палец.


- 3 – AKBT. 10.02.03.ЛР26.0000

7.3.9 Далее система предлагает выполнить этот процесс для регистрации отпечатки других пальцев или завершить процесс регистрации.


- 7.3.10 Завершите процесс регистрации отпечатков пальцев для заданного пользователя (кнопка Finished Enrollment).
 - 7.3.11 Завершите работу с программой, нажав кнопку Done.
- 7.3.12 Создайте на диске D: в своем каталоге новую папку, скопируйте или создайте в созданной папке несколько документов.
- 7.3.13 Вызовите контекстное меню для один из файлов, выберите пункт «OmniPass шифрование файлов». В появившемся окне можно ввести логин и пароль зарегистрированного пользователя или предоставить отпечатки пальцев.

После ввода отпечатка выводиться окно - предупреждение о том, что данные будут зашифрованы и если вы будете пользоваться данным документом вам понадобяться ваши биометрические данные. Согласившись на данное условие, жмем кнопку ОК.

Для успешной аутентификации начнется процесс шифрования данных.

Аналогично выполните процесс расшифрования.

7.4 Контрольные вопросы

- 7.4.1 Что такое дактилоскопия?
- 7.4.2 На какие типы делятся биометрические системы?
- 7.4.3 Назовите достоинства и недостатки какждого типа биометрических систем?

Приложение 1

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Дактилоскопи́я (от греч. δάκτυλος — палец и σκοπέω — смотрю, наблюдаю) — метод идентификации человека по отпечаткам пальцев (в том числе по следам пальцев и ладоней рук), основанный на уникальности рисунка кожи. Широко применяется в криминалистике. Основан на идеях англичанина Уильяма Гершеля, выдвинувшего в 1877 году гипотезу о неизменности папиллярного рисунка ладонных поверхностей кожи человека. Эта гипотеза стала результатом долгих исследований автора, служившего полицейским чиновником в Индии.

Английский антрополог Френсис Гальтон добился введения дактилоскопии в качестве метода регистрации уголовных преступников в Англии в 1895 году. 13 сентября 1902 г. в Великобритании следы пальцев рук с места преступления впервые использованы как доказательство отношению задержанному вины ПО Гарри Джексону. 18 апреля 1902 г. — первое применение в Дании дактилоскопии для опознания преступника. Разные страны мира вводили у себя дактилоскопические методы в течение следующих полутора-двух десятилетий. Одной была Франция. ИЗ последних В России дактилоскопия применяется с 1905 года.

Распознавание отпечатков пальцев применятся в биометрических системах идентификации человека.

В основе многих биометрических систем лежит сканер отпечатков пальцев.

При всем многообразии биометрических систем, возможно упрощенно классифицировать их и разделить их на два типа:

- преобразующие опечатки пальцев в цифровой код при помощи оптического сенсора;
- преобразующие отпечатки пальцев посредством линейного теплового датчика.

Для конечного пользователя разница состоит лишь в том, какие манипуляции необходимо ежедневно производить со сканером: прикладывать палец или проводить им по сенсору.

У обеих систем имеются как преимущества, так и недостатки:

- Прозрачное окно оптического сенсора сканирования необходимо содержать в чистоте. Многократное прикладывание пальцев к нему не очищает стеклянное покрытие, а, скорее наоборот.
- Оптический сенсор обеспечивает сканирование чёткой картинки, которая впоследствии будет сравниваться.
- Линейный тепловой сенсор не даст злоумышленнику никакого шанса приложить «неживой палец», которым может послужить, например, резиновая перчатка.
 - Линейный тепловой сканер очищается с каждым проведением пальцев.

Надёжность сканирования зависит не только от сенсора. Дальнейшая обработка полученных данных — ключ к успешному распознаванию отпечатка.

В сканере отпечатков пальцев с оптическим чувствительным элементом, по сути монохромной матрицей, изображение поступает в виде фотографии.

В простейших сканерах, изображение просто сравнивается с эталоном. Часто, дальнейшая обработка базируется на работе с несколькими шаблонами.

Цифровой код, полученный от сканера, в системе с линейным тепловым датчиком — это всегда разный шаблон. Скан отпечатка пальца всегда разный, качество распознавания зависит от угла, под которым проводился палец, от влажности пальца или поверхности сканера. Данные, поставляемые таким сканером — фактически набор точек. Неважно, как лег палец на поверхность сканера, эти точки всегда будут иметь одинаковый изгиб линий.