Государственное бюджетное профессиональное образовательное учреждение Астраханской области «Астраханский колледж вычислительной техники»

Специальность 09.02.01

ЛАБОРАТОРНАЯ РАБОТА Изучение комбинированного прибора

по дисциплине: «Электротехнические измерения»

Методические рекомендации АКВТ.09.02.01.ЛР17.0102MP

Составил преподаватель: (Цепляев В.К.)

Рассмотрено на заседании цикловой комиссии по специальности 09.02.01 «Компьютерные системы и комплексы» Протокол № от « » 20_{-} г. Рекомендовано для студентов

Председатель комиссии: (Сботова А.Г..)

Копировал

Формат А4

- 1.1 Изучить устройство, принцип действия комбинированного прибора в режиме измерения напряжения постоянного тока.
- 1.2 Изучить устройство, принцип действия комбинированного прибора в режиме измерения напряжения переменного тока.
- 1.3 Дать анализ погрешности измерения и сделать вывод о факторах, влияющих на них.

2 Приборы и оборудование

- 2.1 Комбинированный прибор Ц4353.
- 2.2 Генераторы ГЗ-106.
- 2.3 Блок питания Б5-43.
- 2.4 Магазин сопротивлений Р32.

3 Правила безопасности

- 3.1 Приборы заземлить перед началом работы.
- 3.2 Соблюдать все требования техники безопасности при работе в лаборатории электротехнических измерений.
- 3.3 Соблюдать указания мер безопасности, приведённые в руководстве по эксплуатации приборов и оборудования, применяемых в данной работе.

4 Теоретическая часть

- 4.1 Измерение силы постоянного и переменного токов, постоянного и переменного напряжений, сопротивлений наиболее распространенные виды измерений.
- 4.2 Для проведения этих измерений широкое применение получили комбинированные приборы, для которых характерны:
- удобство применений при ремонте и исследованиях одного прибора для намерения нескольких величин;
- незначительные затраты для обеспечения требуемой универсальности приборов.

Изм. Лист № докум. Подп. Дата

- 4.3 К простейшим относятся приборы, основу которых составляет магнитоэлектрический измерительный механизм (МЭИМ).
- Принцип МЭИМ основан на взаимодействии магнитных полей постоянного магнита и катушки с током.

Среди многообразия конструктивного исполнения наибольшее применение на практике получили МЭИМ с неподвижным магнитом и подвижной катушкой.

4.5 По принципу действия МЭИМ является измерителем постоянного тока с уравнением шкалы:

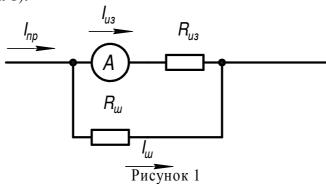
$$\alpha = S_i \cdot I \tag{1}$$

где α - угол отклонения стрелки МЭИМ;

I- ток в катушке;

S_i- чувствительность по току, имеющая достоянное значение для данного мэим.

4.5 При градуировочной шкале МЭИМ его показание можно выразить через число делений п, на которое отклонилась стрелка при протекании по катушке тока I:


$$I = C_i \cdot n \tag{2}$$

где $C_i = \frac{1}{S_i} = \frac{I_{_{\rm H}}}{n_{_{\rm m}}}$ - цена деления шкалы МЭИМ по току;

 ${\rm I_{_{\rm H}}}$ - ток полного отклонения (номинальный ток);

 ${\bf n}_{\rm m}$ -число делений шкалы.

- 4.6 К числу других параметров, характеризующих свойства МЭИМ, относится его внутреннее сопротивление $R_{\scriptscriptstyle \rm HM}$, определяемое в основном сопротивлением катушки измерительного механизма постоянному току.
- 4.7 МЭИМ из-за небольших пределов измерения самостоятельно применяются для измерения силы постоянного тока редко.
- 4.8 Расширения пределов измерения по току в сторону больших значений добиваются включением параллельно МЭИМ специальных низкоомных резисторовшунтов (см.рисунок 1).

Сопротивление шунта на заданный предел измерения рассчитывается по формуле:

$$R_{III} = \frac{R_{II3}}{m-1} \tag{3}$$

Соответственно цена деления также увеличивается в т раз, а внутреннее сопротивление амперметра становится равным:

$$R = \frac{R_{\text{M3}} \cdot R_{\text{III}}}{R_{\text{M3}} + R_{\text{III}}} \tag{4}$$

4.9 МЭИМ может выполнять функции вольтметра с пределом $U_{H} = I_{H} \cdot R_{M3}$.

Результат измерения при этом определяется по формуле:

$$U = C_{n} \cdot n \tag{5}$$

где С_и - цена деления МЭИМ по напряжению.

4.10 Расширение пределов достигается последовательным включением добавочных резисторов (см.рисунок 2).

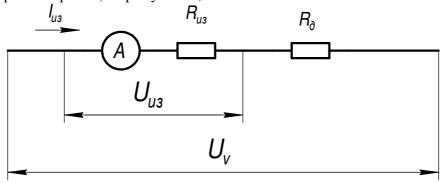


Рисунок 2 - Расширение пределов измения напряжений

В результате падение напряжений на МЭИМ уменьшается, а предел измерения расширяется в $k = U_v/U_{u_3}$ раз.

4.11 Сопротивление $R_{_{\rm J}}$ добавочного резистора на заданный предел рассчитывается по формуле:

$$R_{\mu} = R_{\mu 3} \cdot (k-1) \tag{6}$$

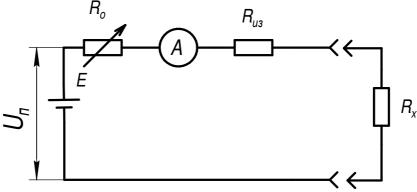
Соответственно изменяются цена деления

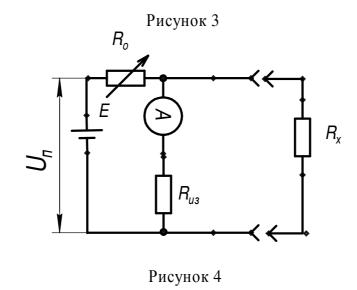
$$C_{v} = C_{u} \cdot k \tag{7}$$

и внутреннее сопротивление

$$R_{BH} = R_{H3} + R_{II} \tag{8}$$

4.12 Зависимость тока от сопротивления участка электрической цепи


Изм. Лист № докум. Подп. Дата


АКВТ.09.02.01.ЛР17.0001МР

позволяет использовать МЭИМ для измерения сопротивления постоянному току.

Такой метод измерения называется методом непосредственной оценки.

4.13 В приборах для измерения сопротивления постоянному току - омметрах, измеряемый резистор R может быть последовательно (см.рисунок 3) (последовательная схема) или параллельно (см.рисунок 4) с МЭИМ (параллельная схема).

- 4.14 Обе схемы омметров содержат источник постоянного тока E (ИП), переменный резистор калибровки и МЭИМ.
- $4.15~{\rm B}$ последовательной схеме ${\rm R_o}$ служит для установки нуля шкалы омметра при коротком замыкании зажимов подключения измеряемого сопротивления ${\rm R_x}$.
- 4.16 При измерении малых сопротивлении более эффективна параллельная схема (см.рисунок 4), в которой резистор $R_{\rm o}$ служит для установки со шкалы при разомкнутых зажимах $R_{\rm x}$.

Нулевому значению R_{x} соответствует нулевой ток через МЭИМ, и, таким образом, нуль шкалы находится на крайней левой отметке.

4.17 К недостаткам таких омметров можно отнести то, что шкалы их

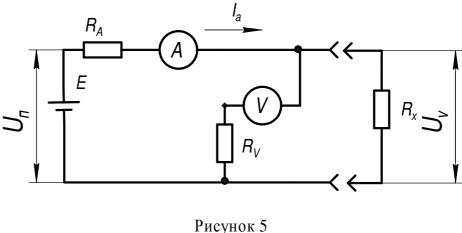
Изм. Лист № докум. Подп. Дата

АКВТ.09.02.01.ЛР17.0001МР

$$\alpha_{\text{посл}} = S_i \frac{U_{\text{п}}}{R_{\text{x}} + R_{\text{o}} + R_{\text{из}}}$$
(9)

$$\alpha_{\text{nap}} = S_{i} \frac{U_{\pi}}{R_{x}R_{\mu_{3}} + R_{0}}$$
 (10)

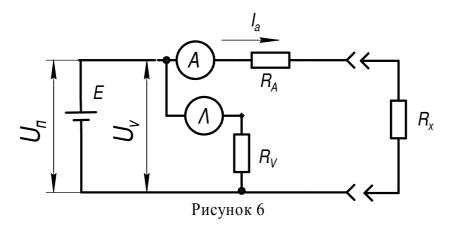
Как следует из формул, градуировка омметров зависит от напряжения питания, что требует обязательной калибровки перед измерением, осуществляемой с помощью.


4.18 Кроме метода непосредственной оценки, при измерении сопротивлений с помощью МЭИМ может быть использован метод амперметра-вольтметра, который является косвенным и сводится к измерению тока и напряжения в цепи с измеряемым резистором $\mathbf{R}_{\mathbf{x}}$ и последующим расчетом значения сопротивления по закону Ома.

При этом включение R_x в измерительную цепь возможно по двум схемам (см. рисунки 5 и 6), а значение измеряемого сопротивления в обоих случаях равно:

$$R_{r} = \frac{U_{v}}{I_{a}} \tag{11}$$

где U_v - показание вольтметра;


 ${\bf I}_{\rm a}$ - показание амперметра.

4.19 При измерениях силы и напряжения постоянного тока, сопротивления постоянному току возникают методические погрешности измерения.

При измерении силы тока амперметр с сопротивлением включается последовательно с участком исследуемой цепи (см.рисунок 7).

Изм.	Лист	№ докум.	Подп.	Дата

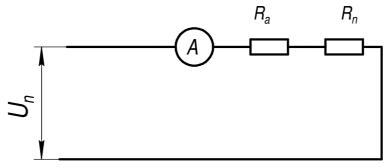


Рисунок 7

При этом увеличивается сопротивление участка цепи, и измеряемый ток уменьшается со значения $I = U_n/R_n$ до значения $I_r = U_n/(R_n + R_a)$.

В результате возникает методическая погрешность измерения тока, которая может быть рассчитана по формуле:

$$\delta_{\rm m} = \frac{I_{\rm r} - I}{I} 100\% = -\frac{100\%}{(1 + \frac{R_{\rm n}}{R_{\rm a}})}$$
 (12)

Из этой формулы следует, что $\,\delta_{_{m}}\,$ тем меньше, чем сильнее неравенство $\,R_{_{a}}\!\!<\!\!<\!\!R_{_{n}}.$

Так как эта погрешность систематическая с известным значением и знаком, то она может быть исключена из результата измерения введением поправки q_i :

$$I=I_r+q_i \eqno(13)$$
 где $q_i=-\frac{\delta_m}{100+\delta_m}I_r.$

4.20 При измерении напряжения вольтметр с входным сопротивлением R_{ν} подключается параллельно исследуемому участку цепи с сопротивлением R_{ν} .

Копировал

Изм.	Лист	№ докум.	Подп.	Дата

АКВТ.09.02.01.ЛР17.0001МР

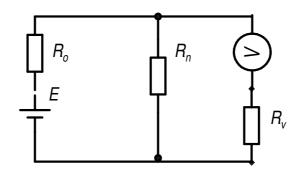


Рисунок 8

Очевидно, что сопротивление исследуемого участка уменьшится. Падение напряжения на нем также уменьшится со значения

$$U = \frac{E}{(1 + \frac{R_o}{R_n})}$$
 (14)

до значения

$$U_{r} = \frac{E}{(1 + \frac{R_{o}}{R_{v}} + \frac{R_{o}}{R_{n}})}$$
 (15)

Таким образом, появится методическая погрешность измерения

$$\delta_{\rm m} = \frac{U_{\rm r} - U}{U} 100\% = -\frac{100\%}{(1 + \frac{R_{\rm v}}{R_{\rm n}} + \frac{R_{\rm v}}{R_{\rm 0}})}$$
(16)

Погрешность $\delta_{\rm m}$ тем меньше, чем сильнее выполняются неравенства $R_{\rm v} >> R_{\rm n}$ или $R_{\rm v} >> R_{\rm 0}$.

Так как эта погрешность систематическая с известным значением и знаком, то она может быть исключена из результата измерения введением поправки $q_{\rm u}$:

$$U=U_{r}+q_{u} \tag{17}$$
 где $q_{u}=-(\frac{\delta_{m}}{100+\delta_{m}})U_{r}$

4.21 При измерении сопротивлений методом амперметра-вольтметра по схемам рисунков 5 и 6 возникают методические погрешности, обусловленные конечными значениями внутренних сопротивлений приборов.

Сопротивление R_r , измеренное по схеме рисунка 5 будет меньше действительного значения, так как показание амперметра будет завышено значение

Изм. Лист № докум. Подп. Дата

АКВТ.09.02.01.ЛР17.0001МР

тока, а показание вольтметра будет равно напряжению на R_x.

Тогда относительная методическая погрешность в %:

$$\delta_{\rm m} = \frac{(R_{\rm r} - R_{\rm x})100\%}{R_{\rm x}} \tag{18}$$

Из этой формулы следует, что погрешность $\delta_{\rm m}$ тем меньше, чем больше сопротивление вольтметра по сравнению с измеряемым сопротивлением.

В случае применения схемы, приведенной на рисунке 6,

$$U_r = I_r R_a + U_r^1 \tag{19}$$

$$R_r = R_x + R_a \tag{20}$$

И тогда относительная методическая погрешность в % будет равна:

$$\delta_{\rm m} = \frac{(R_{\rm r} - R_{\rm a})100\%}{R_{\rm x}} \tag{21}$$

- т.е. δ_{m} тем меньше, чем меньше сопротивление амперметра по сравнению с измеряемым сопротивлением
- 4.22 Таким образом, схемой, приведенной на рисунке 5 следует пользоваться для измерения малых сопротивлений, а схемой, приведенной на рисунке 6 для измерения больших сопротивлений.
- 4.23 При измерении тока, напряжения и сопротивления все большее применение находят цифровые комбинированные измерительные приборы.

Распространение их обусловлено известными достоинствами:

- малой погрешностью измерений,
- высоким быстродействием
- чувствительностью,
- отсутствием субъективной ошибки отсчета результата измерений.
- 4.24 Цифровые комбинированные приборы, как правило, имеют следующую структуру: преобразователи измеряемых величин в напряжение постоянного тока преобразователь напряжения постоянного тока в код.

Преобразователь напряжения переменного тока в напряжение постоянного тока представляет собой усилитель и детектор, охваченные глубокой отрицательной обратной связью.

Преобразование силы тока в напряжение осуществляется путем пропускания измеряемого тока через прецизионный резистор, падение напряжения на котором пропорционально силе тока.

Преобразователь сопротивления в напряжение представляет собой источник тока, который протекает через измеряемое сопротивление и создает на нем падение напряжения, пропорциональное измеряемому сопротивлению.

В преобразователях напряжения постоянного тока в код реализуются различные методы аналого-цифрового преобразования:

- время-импульсный,
- частотно-импульсный,
- кодово-импульсный.
- 4.25 Инструментальная погрешность (т.е. погрешность прибора) может быть
- абсолютной Δ ,
- относительной- δ,
- приведенной- ү.

Абсолютная погрешность определяется по формуле:

$$\Delta = X_x - X_i \tag{22}$$

где X_i - действительное значение величины (оно при поверке соответствует показанию образцового прибора);

Х_х- измеренное значение величины.

Относительная погрешность определяется по формуле:

$$\delta = \frac{\Delta}{X_i} 100\% \tag{23}$$

Приведённая погрешность определяется по формуле:

$$\gamma = \frac{\Delta}{X_N} 100\% \tag{24}$$

где X_N - нормируемое значение, правила выбора, которого регламентированы ГОСТ 8.401-80.

Допускается в формулах вместо X_i использовать показание прибора X_x .

- 4.26 Согласно ГОСТ 8.401-80, если прибор имеет практически равномерную шкалу, значение X_N следует выбирать равным пределу измерения при нахождении нулевой отметки на краю диапазона измерений или равным сумме модулей пределов измерений, если нулевая отметка находится внутри диапазона измерений.
- 4.27 Если прибор имеет существенно неравномерную шкалу, значение $\rm X_N$ принимают равным длине шкалы или ее части, соответствующей диапазону измерений.
- 4.28 Обобщенной характеристикой прибора является класс точности, определяемый пределами допускаемых погрешностей прибора.

Если эти пределы выражаются значениями δ и γ по формулам:

$$\delta = \pm q \tag{25}$$

$$\gamma = \pm p \tag{26}$$

где q и р отвлеченные положительные числа, выбираемые из ряда K = [1.0; 1,5; 2,0; 2,5; 4.0; 5.0; 6,0]10n, n = 1, 0, -1. -2...

то классы точности обозначаются числами, которые равны этим пределам (в процентах) и соответствуют ряду К.

- 4.29 Класс точности прибора проверяется путем поверки прибора, то есть сравнением показаний прибора с показаниями образцового прибора и определением погрешности, которая нормирована для поверяемого прибора.
- 4.30 Для повышения точности измерений используются многократные прямые или косвенные измерения величины. Алгоритмы обработки измерительной информации при таких измерениях приведены метрологической литературе.

5.1 Задания на проведение работы приведены в таблице 1 Таблица 1- Задания на проведение работы

Вариант	1	2	3	4	5	6
Rn1,,Ом	233	230	393	156	234	256
Rn2,,Ом	297	407	477	678	423	367
Rn3,Ом	515	556	666	787	589	561
Uип1,B	8	6	4	3	2	3
Uип2,B	12	8	6	12	12	6
Uип3,B	10	15	10	14	15	9

- 5.2 Справочные данные на измерительные приборы, необходимые ДЛЯ проведения расчётов при выполнении работы.
- 5.2.1 Значения внутренних сопротивлений приборов Ц4353 в режимах измерения тока и напряжения на различных пределах измерения приведены в таблицах 2 и 3.

Таблица 2 - Значения внутренних сопротивлений при измерении силы тока

Предел І,мА	0,12	0,6	3	12	60
R_a ,к O м	1,113	0,285	0,060	0,016	0,004

Таблица 3 - Значения внутренних сопротивлений при измерении напряжения

Предел U,B	1,5	3	12	30
R _v ,кОм	30	60	240	600

5.3 Измерить силу постоянных токов, протекающих через нагрузки, с помощью прибора Ц4353.

Оценить инструментальную и методическую погрешности измерения тока.

5.3.1 Для измерения постоянного тока прибором комбинированным Ц4353

Изм.	Лист	№ докум.	Подп.	Дата

Взам. ине. № |Ине. № дубл.|

Подп. и дата

АКВТ.09.02.01.ЛР17.0001МР

собрать схему изображенную на рисунке 9.

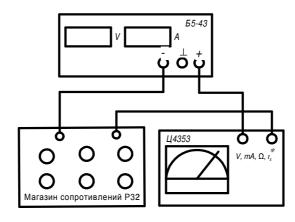


Рисунок 9 - Схема для измерения постоянного тока прибором комбинированным Ц4353

5.3.3 Результаты измерений, расчётов и пределы, на которых они выполнены, занести в таблицу 4 для прибора Ц4353.

Таблица 4. Таблица результатов при измерении постоянных токов

Напряжение источника питания Uпит,В	Сопротив- ление нагрузки Rn,Ом	Предел измерения	Іиз, мА	$\delta_{i},\%$	$\delta_{\sf mi}, \%$	q _i ,мА	І,мА

- 5.3.4 Формулы для расчётов:
- а) максимальной абсолютной погрешности измерения Δ :

$$\Delta = K \cdot I_N \cdot 10^{-2}$$

где К - класс точности прибора на пределе измерения;

 I_{N} - значение верхнего предела шкалы.

б) относительной погрешности измерения $\,\delta_{i} \colon$

$$\delta_{\rm i} = \frac{\Delta}{\rm I_{_{M3}}} 100\%$$

где I_{u_3} - измеренное значение тока.

в) методической погрешности измерения тока $\delta_{\rm m}$:

Изм	Пист	№ докум.	Подп.	Лата

АКВТ.09.02.01.ЛР17.0001МР

$$\delta_{\rm m} = -\frac{100\%}{(1 + \frac{R_{\rm n}}{R_{\rm a}})}$$

где R_n - сопротивление измеряемой цепи;

R_а- внутреннее сопротивление амперметра.

г) поправки измерения q_i :

$$q_i = -\frac{\delta_m}{100 + \delta_m} I_{\text{\tiny M3}}$$

д) значения измеренного тока с поправкой І:

$$I=I_{N3}+q_i$$

- 5.4 Измерить падения напряжения постоянного тока на нагрузках с помощью прибора Ц4353. Оценить инструментальную и методическую погрешности измерения напряжения.
- 5.4.1 Для измерения постоянного напряжения прибором комбинированным Ц4353 собрать схему изображенную на рисунке 10.

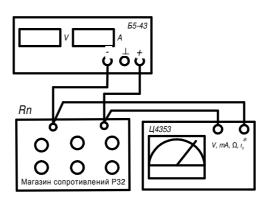


Рисунок 10 - Схема для измерения постоянного напряжения прибором Ц4353

5.4.2 Результаты измерений, расчётов и пределы, на которых они выполнены, занести в таблицу 6 для прибора Ц4353.

Таблица 5. Таблица результатов при измерении постоянных напряжений прибором Ц4353

Напряжение источника питания Uпит,В	Сопротив- ление нагрузки Rn,Ом	Предел измерения	Uиз, В	δ_{u} ,%	$\delta_{ui},\!\%$	q _u ,B	U,B

Изм. Лист № докум. Подп. Дата

АКВТ.09.02.01.ЛР17.0001МР

$$\Delta = K \cdot U_{N} \cdot 10^{-2}$$

где К - класс точности прибора на пределе измерения;

 ${\rm U_{N}}$ - значение верхнего предела шкалы.

б) относительной погрешности измерения δ_i :

$$\delta_{i} = \frac{\Delta}{U_{_{\rm H3}}} 100\%$$

где $U_{_{\rm H3}}$ - измеренное значение напряжения.

в) методической погрешности измерения напряжения $\delta_{\rm m}$:

$$\delta_{\rm m} = -\frac{100\%}{(1 + \frac{R_{\rm v}}{R_{\rm n}})}$$

где R_n- сопротивление измеряемой цепи;

Rv - внутреннее сопротивление вольтметра;

г) поправки измерения q_{ij} :

$$q_v = -\frac{\delta_m}{100 + \delta_m} U_{_{\rm H3}}$$

д) значения измеренного напряжения с поправкой U:

$$U = U_{y3} + q_{y}$$

5.5 Измерить сопротивления, воспроизводимые магазином Р32, с помощью приборов Ц4353.

Оценить инструментальную погрешности измерении сопротивления.

5.5.1 Для измерения сопротивления прибором комбинированным Ц4353 собрать схему изображенную на рисунке 11.

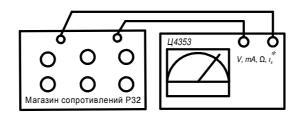


Рисунок 11 - Схема для измерения сопротивления прибором Ц435

5.5.2 Результаты измерений, расчётов и пределы, на которых они выполнены, занести в таблицу 6 .

Изм.	Лист	№ докум.	Подп.	Дата

АКВТ.09.02.01.ЛР17.0001МР

	дубл
	Ø₩
	Инв.
	剢
	Взам. инв. №
	Подп. и дата
	Ш
	подл.
	∛
	Инв.
_	

Сопротивление магазина Р32 R,Ом	Предел измерения	Rиз, Ом	Δ,Ом	δ,%	Класс точности прибора
100					
1000					
10000					

- 5.5.3 Формулы для расчётов:
- а) абсолютной погрешности измерения Δ:

$$\Delta = R - R_{\mu_3}$$

где R - значение сопротивления магазина сопротивления Р32.

б) относительной погрешности измерения δ:

$$\delta = \frac{\Delta}{R_{_{\text{M3}}}} 100\%$$

- 5.6 Измерение напряжения синусоидального сигнала прибором комбинированным Ц4353.
 - 5.6.1 Схема измерений приведена на рисунке 12.
- 5.6.2 Установить частоту генератора Г3-106 равную 1000 Гц. Поочерёдно установить по прибору генератора значения выходного напряжения равными 2, 3, 4, 5 В и произвести замеры значений выходного напряжения прибором комбинированным Ц 4353.
 - 5.6.3 По результатам измерений рассчитать:
 - а) амплитудное и средневыпрямленное значения измеренных напряжений;
- б) абсолютную и относительную погрешности измерений и сравнить их со значениями, указанными в технических описаниях этих приборов.
 - 5.6.4 Расчётные формулы:
 - а) вычисление амплитудного значения \mathbf{U}_{m} измеренного напряжения:

$$U_{\rm m}=1,41U_{_{\rm M3M}}$$

б) вычисление значения средневыпрямленного $\ U_{\text{ср. B}}$ измеренного напряжения:

$$U_{cp.B} = 0.9U_{u_{3M}}$$

Копировал

Изм.	Лист	№ докум.	Подп.	Дата

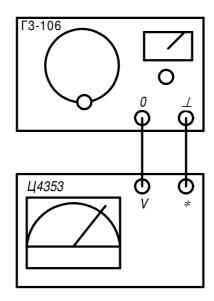


Рисунок 12 - Схема измерения напряжения синусоидального сигнала прибором комбинированным Ц4353

в) вычисление абсолютной погрешности Δ измерения напряжения:

$$\Delta = \frac{K_{T} \cdot U_{HOM}}{100}$$

г) вычисление относительной погрешности δ измерения напряжения:

$$\delta = \frac{\Delta}{U_{_{\rm M3M}}} \cdot 100\%$$

где $K_{_{\mathrm{T}}}$ - класс точности (относительная погрешность) измерительного прибора;

 $\mathbf{U}_{_{\mathbf{H3M}}}$ - показания измерительного вольтметра;

 ${\rm U}_{{
m HOM}}$ - верхний предел шкалы, на которой было произведено измерение.

5.6.5 Результаты измерений и расчета занести в таблицу 7.

Таблица 7

Выходное напряжение генератора Ur, В	Измеренное напряжение Иизм, В	Um, B	Uсв, В	Δ, Β	δ,	Предел измерения, В
2						
3						
4						
5						

Изм. Лист № докум. Подп. Дата

АКВТ.09.02.01.ЛР17.0001МР

6 Содержание отчёта

- 6.1 Наименование работы.
- 6.2 Цель работы.
- 6.3 Приборы и оборудование.
- 6.4 Выполнение работы:
- 6.4.1 Схемы измерений.
- 6.4.2 Таблицы результатов измерений.
- 6.4.3 Расчётные формулы
- 6.5 Основные технические характеристики измерительных приборов, примененных в работе.
 - 6.6 Выводы о проделанной работе.

7 Контрольные вопросы

- 7.1 Поясните принцип действия, разновидности конструкции, достоинства и недостатки МЭИМ.
- 7.2 Поясните способы расширения пределов измерения по току комбинированного магнитоэлектрического прибора, приведите формулы для вычисления сопротивления шунта.
- 7.3 Поясните способы расширения пределов измерения по напряжению комбинированного магнитоэлектрического прибора, приведите формулы для вычисления сопротивления добавочного резистора.
- 7.4 Поясните принцип действия омметров, выполненных на базе МЭИМ по последовательной и параллельной схемам.
- 7.5 Поясните влияние уровня напряжения источника питания на градуировку отсчетных шкал комбинированного магнитоэлектрического прибора в режиме измерения сопротивления.
- 7.6 Поясните принцип измерения сопротивлений с использованием метода амперметра-вольтметра.
- 7.7 Поясните причину возникновения методической погрешности в режиме измерения тока с помощью комбинированного магнитоэлектрического прибора.
- 7.8 Поясните причину возникновения методической погрешности в режиме измерения напряжения с помощью комбинированного магнитоэлектрического

Изм. Лист № докум. Подп. Дата

прибора.

- 7.9 Поясните причину возникновения методической погрешности при измерении сопротивления методом амперметра-вольтметра.
- 7.10 Поясните структуру комбинированных цифровых измерительных приборов.
- 7.11 Охарактеризуйте особенности различных методов аналого-цифрового преобразования:
 - время-импульсного;
 - частотно-импульсного;
 - кодово-импульсного.
- 7.12 Поясните, что такое абсолютная, относительная и приведение; погрешности приборов, и как приведенная погрешность определяется для разных видов шкал.
- 7.13 Поясните, что такое класс точности приборов и как осуществляется поверка приборов.
- 7.14 Приведите алгоритм обработки результатов наблюдений при прямом измерении напряжения.
- 7.15 Приведите алгоритм обработки результатов наблюдений при косвенном измерении сопротивления методом амперметра-вольтметра.

8 Литература

- 8.1 Атамалян Э.Г. Приборы и методы измерения электрических величин. М. Дрофа, 2005.
- 8.2 Измерения в электронике. Справочник./Под ред. В. А. Кузнецова. М. Энергоатомиздат,1987.
- 8.3 Переносные комбинированные приборы. Справочное пособие. -М. Радио и связь, 1991.
- 8.4 Садченков Д.А. Современные цифровые мультимеры.-М. СОЛОН- Прес, 2002.
 - 8.5 Хрусталева З.А. Электротехнические измерения. -М: «КноРус», 2009 г.

Приложение А

Прибор комбинированный Ц4353

А.1 Назначение

Прибор электроизмерительный комбинированный Ц4353 (см.рисунок А.1) с автоматической защитой от электрических перегрузок предназначен для измерения:

- силы и напряжения постоянного тока;
- среднеквадратичного значения силы и напряжения переменного тока синусоидальной формы;
 - сопротивления постоянному току;
 - электрической емкости;
- абсолютного уровня сигнала по напряжению переменного тока в электрических цепях.

А.2 Технические и метрологические характеристики

В данной лабораторной работе прибор Ц4353 используется только для измерения силы и напряжения постоянного тока, а также сопротивления постоянному току.

Поэтому в таблице А.1 приведены технические и метрологические характеристики именно для этих режимов измерения.

Таблица А.1

Инв. № дубл.

Взам. инв. №

Подп. и дата

№ подл.

Измеряемая величина	Диапазон измерений	Класс точности	Предел допускаемого значения основной приведенной погрешности, %
Сила постоянного тока, мА	00.06; 00.12; 00.6; 03; 012; 0,60;0300;01500	1,5	± 1,5
Напряжение постоянного тока, В	00.075; 01.5; 03; 012; 030; 060; 0120; 0600	1,5	± 1,5
Напряжение переменного тока, В	0,251,5; 0,53; 16; 2,515; 1060; 25150; 50300; 100600	2,5	± 2,5
Сопротивление постоянному току, кОм	00.3; 010; 0100; 01000; 010000	1,5	±1,5

Изм. Лист № докум. Подп. Дата

При этом основная погрешность прибора выражается в процентах в виде приведенной погрешности, по формуле:

$$\gamma = \frac{\Delta}{X_N} 100\%$$

где Δ - значение абсолютной погрешности, выраженное в единицах измеряемой величины или в единицах длины шкалы;

 $X_{
m N}$ - нормируемое значение (конечные значения диапазонов измерений силы тока, напряжения постоянного тока или минимальные значения длин шкал диапазонов измерения сопротивления постоянному току).

Значения длин шкал I_{np} на « Ω » - не менее 62 мм, на « $k\Omega$, $M\Omega$ » - не менее 58 мм.

Основная погрешность в режиме измерения сопротивления находится из формулы

$$\delta = \gamma \cdot \frac{I_{\pi p}}{I_{\pi}}$$

где $I_{_{\rm U}}$ - длина участка шкалы между нулевым значением и местом установления показания прибора на « Ω » и « $k\Omega$, $M\Omega$ ».

Ток полного отклонения измерительного механизма, используемого в приборе, 29 мкA, и сопротивления измерительного механизма составляет не более 1000 Ом.

А.З Устройство и принцип работы

В приборе применен измерительный механизм магнитоэлектрической системы на растяжках с внутрирайонным магнитом.

Расширение диапазонов измерений осуществляется с помощью коммутации универсального шунта и добавочных сопротивлений.

Для работы в режиме измерения сопротивлений используются электрохимические источники тока, расположенные в камере с тыльной стороны корпуса.

А.4 Методика работы с прибором

А.4.1 До подключения прибора к измеряемой цепи независимо от рода измеряемой величины проверить и при необходимости установить механический нуль с помощью корректора.

Рабочее положение прибора горизонтальное. Включить автоматическую защиту, нажав кнопку защиты до упора.

- А.4.2 Измерение силы постоянного тока
- А.4.2.1 Переключателем режимов работы установить род тока: постоянный (---).

Изм.	Лист	№ докум.	Подп.	Дата

- А.4.2.2 Установить предел измерения тока, соответствующий измеряемому значению тока, а при неизвестном значении максимальный предел 1500 мА.
- А.4.2.3 Клеммы прибора «*» и «V, mA, Ω , r_x » должны быть последовательно подключены к исследуемому участку цепи с соблюдением полярности.

При отклонении стрелки влево от нуля изменить полярность на противоположную. Выбрать предел измерения, обеспечивающий минимальную погрешность (стрелка должна, находится по возможности ближе к концу шкалы), и определить цену деления шкалы. Отсчитать измеренное значение, как произведение цены деления на количество делений, указанное стрелкой по шкале «V, mA ---».

- А.4.3 Измерение напряжения постоянного тока
- А.4.3.1 Переключателем режимов работы установить род тока: постоянный (--).
- А.4.3.2 Установить предел измерения, соответствующий измеряемому значению напряжения, а при неизвестном значении максимальный предел 600 В.
- А.4.3.3 Клеммы прибора должны быть подключены к «*» и «V, mA, Ω , r_x » параллельно исследуемой цепи с соблюдением полярности.

При отклонении стрелки влево от нуля изменить полярность.

Выбрать предел измерения, обеспечивающий минимальную погрешность, и определить, цену деления шкалы.

Отсчитать измеренное значение как произведение цены деления на количество делений, указанное стрелкой по шкале «V, mA».

- А.4.4 Измерение сопротивления постоянному току
- А.4.4.1 Установить переключатель пределов в положение « Ω ; $k\Omega x1$ » и нажать обе кнопки « $k\Omega$, М Ω » и «---» переключателя режимов (при измерении сопротивления менее 300 Ом) или установить переключатель пределов в положения « Ω ; $k\Omega x1$ », или « $k\Omega x10$ » или «x100» или «x100» или «x100» и нажать кнопку «x100» переключателя режимов (при измерении сопротивления более 300 Ом).
- A.4.4.2. Установить стрелку прибора на h по шкале « Ω » (при измерении сопротивления менее 300 Ом) или на 0 по шкале « $k\Omega$, M Ω , nF» при закороченных зажимах «*» и «V, мA, Ω , r $_{\rm x}$ » (при измерении сопротивления более 300 Ом) ручкой nF.
- А.4.4.3 При измерении сопротивлений менее 300 Ом измеряемый резистор подключен к клеммам «*» и «V, mA, Ω , r_x » и отсчитывается значение сопротивления по шкале « Ω ».

При намерении сопротивлении более 300 Ом измеряемый резистор подключается к клеммам «*» и «V, mA, Ω , r_x » и отсчитываете значение сопротивления по шкале «k Ω , М Ω » при умножении результата на xl, x10. или x100 в

Изм. Лист № докум. Подп. Дата

зависимости от положения переключателя пределов.

При установке за пределами рабочей части шкалы выбирают более удобный предел, обеспечивающий наибольшую точность отсчета.

По окончании намерений сопротивления необходимо перевести переключатель пределов в любое положение, кроме « Ω ; k Ω x1», «k Ω x10», «x100», переключатель режимов работы в положение «~» или «---».

А.4.5 По окончании работы с прибором отключить защитную кнопку.

Взам. инв. № № подл. Лист АКВТ.09.02.01.ЛР17.0001МР 24 Изм. Лист № докум. Подп. Дата

Копировал

Формат А4

Приложение Б

Генератор Г3-106

- Б.1 Генератор Г3-106 источник синусоидальных и прямоугольных электрических колебаний в диапазоне звуковой и ультразвуковой частоты.
- Б.2 Генератор Г3-106 малогабаритный портативный генератор RC-типа с плавной установкой частоты в пределах каждого из 4 поддиапазонов.
- Б.3 Генератор Г3-106 может использоваться как источник сигнала в системах контроля радиотехнических средств, в комплектах аппаратуры связи и дальней связи, в селективных и широкополосных системах.
- Б.4 В режиме синхронизации генератор Г3-106 представляет собой активный фильтр и может применяться для уменьшения гармонических искажений синхронизирующего сигнала, повышения его выходного уровня, получения синусоидального сигнала из несинусоидального.
- Б.5 Выходное напряжение отсчитывается по шкале встроенного вольтметра (шкала вольтметра отградуирована в среднеквадратических значениях синусоидального сигнала вольтах)и выходному аттенюатору.
 - Б.6 Технические характеристики генератора Г3-106:
 - а) диапазон частот: 20 Гц-200 кГц (4 поддиапазона);
 - б) основная погрешность установки частоты: ±(3+30/f) %;
 - в) нестабильность частоты: $\pm 20 \cdot 10^{-4}$ f (за 15 минут) и $\pm 200 \cdot 10^{-4}$ f (за 3 часа);
 - г) выходное напряжение: 5 В (600 Ом);
- д) ослабление выходного напряжения: 0-60 дБ с дискретностью через 20 дБ (с делителем) и -22 дБ (плавно регулируемое);
- е) погрешность установки выходного напряжения: $\pm 6\%$ (установка опорного уровня) и ± 0.8 дБ (делитель);
- ж) нестабильность выходного напряжения: $\pm 1~\%$ (за 15 минут) и $\pm 10~\%$ (за 3 часа);
- и) коэффициент гармоник, %: 0,5 (20-200 Гц); 0,3 (200 Гц-20 кГц); 1 (20-200 кГц);

Копировал

- к) параметры сигнала прямоугольной формы:
- амплитуда: 5 В (600 Ом);
- скважность: 2;
- длительность фронта и среза: 150 нс:
- л) потребляемая мощность: 20 ВА;
- м) питание: 220±22 В, 50 Гц или 115 В, 400 Гц;
- н) масса: 4,6 кг.
- п) габариты: 225х258х162 мм.

	_			
14.		Ma Di	- T- 3	7
ИЗМ.	JIUCM	№ докум.	Н 100П.	шата і

Приложение В

Магазин сопротивлений Р32.

- В.1 Магазин сопротивлений Р32 шестидекадный магазин сопротивлений с диапазоном установки от 0,1 до 99999,9 Ом.
 - В.2 Магазин имеет небольшие габариты и массу 265х185х110 мм, вес 3 кг.
 - В.3 Погрешность установки сопротивления Р32 рассчитывается по формуле: $\pm 0.2 + 6 \cdot 10^{-6} \cdot (Rk/R-1)$

где Rk - наибольшее значение сопротивления магазина;

- R номинальное значение включенного сопротивления.
- В.4 Измерительный магазин сопротивлений Р32 служит для измерения сопротивления постоянному и переменному току и используется в качестве многозначной меры электрического сопротивления.
- В.5 Измерительный магазин Р32 выполнен в настольном горизонтальном исполнении и имеет карболитовый корпус.

На панель управления Р33 выведены декадные переключатели и клеммные соединители.

Каждая из декад имеет по десять равно номинальных значений устанавливаемых сопротивлений.

На панель так же выведены и множители декад.

В.6 Работа с магазином сопротивлений Р32 заключается в последовательном подключении требуемого количества резисторов образцовой величины выставляемых в каждой декаде.

Изм. Лист № докум. Подп. Дата

Инв. № дубл.

Взам. инв. №

№ подл.

АКВТ.09.02.01.ЛР17.0001МР

Приложение Г

Источник питания Б5-43, Б5-44, Б5-45

- Г.1 Предназначены для стабилизации постоянного напряжения или тока в зависимости от установленного режима.
- Г.2 Источники питания имеют плавную регулировку выходного напряжения и тока, которая осуществляется с передней панели двухоборотным потенциометром с высокой разрешающей способностью.
- Г.3 Предусмотрена работа источника, как с изолированным выходом, так и при заземлении клеммы любой полярности.
- Г.4 Блок питания имеет возможность подключения по четырех проводной схеме обеспечивает гарантированное выходное напряжение непосредственно на нагрузке.
- Г.5 Источник питания имеет цифровую индикацию выходных параметров. Допускается последовательное или параллельное соединения двух источников.
- Г.6 Блоки питания существуют модификаций без цифрового индикатора и имеют декадный набор выходных параметров (напряжения и тока).

Технические характеристики прибора Б5-43, Б5-44, Б5-45 приведены в таблице Γ .1.

Таблица Г.1

Наименование параметра	Б5-43	Б5-44	Б5-45
Выходное напряжение,В	0-10	0-30	0-50
Ток нагрузки,А	0-2	0-1	0-0,5
Нестабильность, % при изменении U сети на +/- 10% Напряжения Тока	0,01 0,005	0,01 0,005	0,01 0,005
Нестабильность, % при изменении нагрузки от 0 до 0,9R макс Напряжения Тока	0,05 0,1	0,05 0,1	0,05 0,1

Изм. Лист № докум. Подп. Дата

Взам. инв. №

№ подл.